Search published articles


Showing 2 results for Activated Carbon

Sumrit Mopoung, Khachidapron Seeoon,
Volume 21, Issue 0 (3-2024)
Abstract

Activated carbon preparation from tamarind wood derived charcoal by microwave-assisted sodium chloride activation was studied to investigate the effects of 0-5 wt.% NaCl and 450-850 W microwave heating power.  The properties of the derived products were analyzed by FTIR, XRD, SEM-EDS, and BET. Methylene blue adsorption by the activated carbon products was also studied to evaluate the contract time, pH, methylene blue concentration, and adsorption isotherms. The study’s results showed that the percent yields (77.42-92.52%) of the fabricated activated carbons decrease with increasing wt.% of NaCl and MP. On the other hand, the contents of disordered graphitic carbon, carbonate, basic surface functional groups, and mesopores increased. However, 3 wt.% NaCl and 600 W microwave irradiation power were identified as appropriate conditions for activation, which created the micro-mesopore (pore size range 1.59 -14.76 nm) on the surface of the derived activated carbon products. Optimal values of equilibrium time and pH for methylene blue adsorption are 60 minutes and 8, respectively.  The results of methylene blue concentrations were fitted to the Langmuir isotherm indicating 33.33 mg/g as the maximum methylene blue adsorption capacity.
Dewi Qurrota A'yuni, Hadiantono Hadiantono, Velny Velny, Agus Subagio, Moh. Djaeni, Nandang Mufti,
Volume 21, Issue 3 (9-2024)
Abstract

Rice husk carbon by-product from the industrial combustion is a promising source to produce a vast amount of activated carbon adsorbent. This research prepared rice husk-activated carbon adsorbent by varying the concentration of potassium hydroxide solution (5, 10, 15, 20 % w/v) and activation time (2, 4, 6, 8 hours). Fourier-transform infrared spectral characterization (FTIR) indicated a significant effect before and after activation, especially the presence of hydroxyl groups. Based on the iodine adsorption, the specific surface area of the produced-activated carbon was approximately 615 m2/g. Experimental results showed that increasing potassium hydroxide concentration and activation time increases the water vapor adsorption capacity of the activated carbon. Compared with the rice husk carbon, the KOH-activated carbon enhanced the water vapor adsorption capacity to 931%. In the adsorption observation, changing the temperature from 15 to 27 ℃ caused a higher water vapor uptake onto the activated carbon. Two adsorption kinetics (pseudo-first- and pseudo-second-order models) were used to evaluate the adsorption mechanism. This research found that rice husk-activated carbon performed a higher water vapor adsorption capacity than other adsorbents (silica gel, zeolite, and commercially activated carbon).

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb