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ABSTRACT

Colliding Bodies Optimization (CBO) is a population-based metaheuristic algorithm that
complies physics laws of momentum and energy. Due to the stagnation susceptibility of
CBO by premature convergence and falling into local optima, some meritorious
methodologies based on Sine Cosine Algorithm and a mutation operator were
considered to mitigate the shortcomings mentioned earlier. Sine Cosine Algorithm
(SCA) is a stochastic optimization method that employs sine and cosine based
mathematical models to update a randomly generated initial population. In this paper, we
developed a new hybrid approach called hybrid CBO with SCA (HCBOSCA) to obtain
reliable structural design optimization of discrete and continuous variable structures,
where a memory was defined to intensify the convergence speed of the algorithm.
Finally, three structural problems were studied and compared to some state of the art
optimization methods. The experimental results confirmed the competence of the
proposed algorithm.
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1. INTRODUCTION

Optimization is a pivotal context in various fields of study especially in engineering hence
metaheuristic algorithms (MAs) have recently attracted the attention of a significant
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community of researchers. Considering the fact that MAs can readily be implemented in a
wide range of problems needless to gradient information and they can obtain a near-optimal
solution for any problem, namely continuous and discrete problems, makes them a practical
optimization method[1, 2].

MAs are powerful, robust, and mostly nature-inspired optimization methods and due to
their stochastic approach, a wide range of optimization problems can be tackled by
employing these methods. Each MA suffers some drawbacks alongside its merits in
searching the global optimum that is, one particular MA cannot be capable of solving every
single optimization problem, especially since there are various types of problems. Every MA
has two major phases approaching the most feasible solution in the search domain called (1)
Exploration phase (diversely looking for possible feasible answers all over the search space)
which takes place in the primary steps of the search process and (2) Exploitation phase
(meticulously looking for any better answers in neighboring areas of the solutions found in
exploration phase). The most challenging task for researchers in developing MAs is to exert
a proper balance between these two phases. The desirable speed of converging to the global
optimum solution plus the capability of jumping out of the local optima can severely
strengthen the performance of a particular MA. Therefore, numerous algorithms are
developed in order to overcome the deficits of MAs in solving different problems [3-6].

One essential key to the proper design of a structure is the optimal design of the structure.
It could lead to efficient construction material consumption, considerable subsidence of
material waste production, and eventually, result in a costly beneficial design. Structural
optimization can be categorized as (1) sizing optimization of structural members, (2)
searching for the optimal form of the structure, and (3) structural members connectivity and
optimal size acquirement [7]. Kaveh and Illchi Ghazaan applied Enhanced Whale
Optimization Algorithm (EWOA) for the sizing optimization of skeletal structures [7].
Kaveh and Zaerreza utilized Improved Shaffled based JAYA algorithm (IS-JAYA) for the
optimum design of the braced dome with frequency constraint [8]. Azizi et al. adopted
Chaos Game Optimization (CGO) to optimize the shape and size of truss structures [9].
Fernandez and Masters employed hybridized Particle Swarm and Big Bang-Big Crunch
optimization to explore and then exploit (ETE) the design domain of large planar frame
structures [10]. Kaveh and Hosseini optimized the size of discrete and continuous large-
scale truss structures exerting the Doppler Effect-Mean Euclidian Distance Threshold
Algorithm (DE-MEDT) [11]. Kaveh et al. came up with a novel MA called Black Hole
Mechanics Optimization (BHMO) in order to optimize real-size truss and frame structures
[12].

Since the development of the two population-based MAs called Colliding Bodies
Optimization (CBO) presented by Kaveh and Mahdavi [13] and Sine Cosine Algorithm
(SCA) introduced by Mirjalili [14], they have been a hotspot for the researchers to upgrade
capabilities of them and study their applications. CBO is based on Newtonian physics
collision laws [13] in which two CBs collide and their positions are updated according to the
laws of collision in physics. SCA is based on the random production of a population and
fluctuation of them outwards or towards the best candidate solution (i.e. Destination Point)
using two sine and cosine function-based mathematical models and a number of random and
adaptive variables [14]. We conducted a new approach called Hybrid CBO with SCA
(HCBOSCA) to insert a better correlation between global and local search to obtain a more
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reliable optimal design for discrete and continuous variable structures.

The remainder of the paper is a brief explanation of CBO and MSCA followed by
instruction on HCBOSCA in Section 2; in Section 3, three structural problems with discrete
and continuous variables are utilized to compare HCBOSCA with CBO and a number of its
variants as well as some other well-known approaches and eventually, Section 4 presents the
conclusions of this study.

2. META-HEURISTIC ALGORITHMS

In this section, after a concise overview of CBO and MSCA, we will present the hybrid
variant of CBO and SCA so-called HCBOSCA.

2.1 Colliding Bodies Optimization

Colliding Bodies Optimization (CBO) is a population-based MA developed by Kaveh and
Mahdavi [13] inspired by the collision phenomenon in nature. In this method, after the
collision of two bodies called colliding bodies (CBs), they try to reach a minimum level of
energy. This technique is notably simple to implement and does not use any memories to
save any best optimum solutions or positions. Each CB is a solution candidate like x; and
each of which has a specified mass defined as:

1
fit(®

my = Y —/fit(k) ; k=12,..,n (1)
where fit(i) represents the fitness value of the ith solution candidate and n is the number of
CBs.

In order to select two objects for collision, CBs will be arranged ascending according to
their fitness values. Then the sorted CBs will equally be divided into two groups: (1)
Stationary group, (2) Moving group. The first group (stationary group) will contain the first
half of these organized CBs and the other one (moving group) will contain the second half of
them. Moving objects collide to stationary ones to not only improve their own positions, but
also direct the stationary objects towards a better position. Before the collision the velocity
of stationary CBs is equal to zero:

v;=0 i=1,2,...,§ )
the velocity of each moving CB before collision is:
. . n n
vile._g—xi X l—;+ 1,E+2,...,n (3)
the velocity of each CB in stationary group after collision (v;) is defined by:

' . . n
v = ((mi% + emi%)v”g)/(mi + mi%) : i=12..,5 (4)
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and the velocity of the moving ones after the collision is specified as:
I i . n n
v = ((m; — smi_g)vi)/(mi + mi_g) ;=24 1L2+2..n (5)

The new updated position of each CB after the collision is evaluated with respect to its
velocity and the position of stationary CB. So, the new positions of stationary CBs are:

xlpew = x; + rnd o 171{ ; i=1,2, ,2 (6)

where x[**", x; and v; are the new position, previous position and the velocity after the
collision of the ith CB, respectively. rnd is a random vector distributed uniformly in [-1,1]
domain. The sign “o”, depicts an element-by-element multiplication. The new position of
each moving CB can be obtained from:

I . ., _n n
xmew = xi_g+rndo v; X l—5+1,5+2,...,n (7)
where ¢ is the coefficient of restitution (COR) and it decreases linearly from 1 to zero. It is

stated as:

gen
e=1-—"r ®)
maxgen

o
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Figure 1. Schematic of colliding bodies
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where gen denotes the current generation number and maxgen is the total number of
generations. Fig. 1 illustrates the concept of CBO in which the CBs with higher fitness are
greater in diameter compared to those with lower fitness. The reader should refer to Kaveh
and Mahdavi [13] for extra details.

2.2 Modified Sine Cosine Algorithm

The Sine Cosine Algorithm (SCA) is a recently developed population-based MA [14]. The
core idea is inspired by trigonometric sine and cosine functions. Modified Sine Cosine
Algorithm (MSCA) is a modified version of SCA, tried to enhance the performance of the
SCA [15]. In this method, the equations proposed to update the position, contains both
exploration and exploitation phase of an optimization algorithm:

xgen+1 _ Xpj— TN Sin(Z”rZ) |27"3XDJ- - xf;m 1, > 0.5 ©
v Xp,j — T cos(2mry) |2r3xD,j - ijenl 1, < 0.5
_ . gen s
n=axXsin|{|l-———=—|)xX<|+b (10)
maxgen/ 2

where x, ; is the jth dimension of the global best solution considered as destination point,

x77" and xfj"’”“ are the position of the ith candidate solution, i = 1,2, ...,n and for the jth
dimension, j = 1, 2, ..., d where d is the number of variables, at generation gen and (gen +
1), respectively, and r,, r3, and r, are random numbers uniformly distributed in the range of
(0,1). Also, a new nonlinear transition parameter r; was introduced as in Eqg. 10 to exert a
better balance between the exploration and exploitation phases.

In order to avoid the possible local optima, a new phase was added to the algorithm that
contains the mutation and generation of a new solution defined as:

den+1 _ { Xgen X (1 + 5) s > 0.5 (11)
' Xmin + ﬁ X (Xmax - Xmin) Ty < 0.5
Bis1 = €. Br X (1 — Bi) (12)

where X, and X,,.., are the lower and upper boundaries for the ith candidate solution
respectively, XJ°" is the destination point, 75 is a random number uniformly distributed in
the interval of (0,1), B is a random number derived from the Logistic Chaotic Map and c is
fixed to the value 4 [15]. § is an operator of Gaussian Mutation with a density function

specified as:
2

1 _B
e 207 (13)
T

fGaussian (0,02) (B) =

o
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Here o2 represents the variance corresponding to each candidate solution, so, the
mutation operator utilized to update the positions can be defined as:

ZH=XL x (1+G(B)) if 15>0.5 (14)
The reader should study Gupta et al. [15] for excessive information.

2.3 Hybrid Colliding Bodies Optimization and Sine Cosine Algorithm

Considering the inadequate power of CBO in extrication of the local optima causing
stagnation and in addition, its poor convergence speed; here we aim to engage the Modified
Sine Cosine Algorithm (MSCA) in order to propose a new hybrid version of CBO for
reliable design of structures through the enhanced balance of exploration and exploitation
phases alongside the accelerated convergence speed by proper synchronization of the two
aforementioned approaches.

Kaveh and llchi Ghazaan [16] introduced an enhanced variant of CBO called ECBO in
which a memory storing some of the best-so-far solution vectors was defined named cm
[16]. Also, the same is utilized in the present work to elevate the convergence speed.
Accordingly, Eq. (9) will be substituted as:

en+1 . en
xfj =My, —n sin(2mry) |2r3cm1,j - ij 1y > 0.5
gen+1 gen (15)
“n . =cmyj—rcos(2mry) |2rsemy j — X n 7, < 0.5
o) ’ g l+5.]

3 T T T T

r1*(sin)
—rl*(cos)

amplitude
: o = W

—

0 5 10 15 20 25 30 35 40 45 50
generation

Figure 2. Subsidence pattern of the amplitude of sine and cosine (a = 2, b = 0.5)

where i = 1, 2, % and cm, ; is the jth dimension of the best CB vector, j =1,2,...,d,

obtained so far and as mentioned earlier n is the total number of CBs. Fig. 2 shows the
subsidence pattern of sine and cosine functions multiplied by r; through 50 generations. It
can be observed that in a particular generation, these two functions have notable differences
in their amplitudes (e.g., see Fig. 2 at generation 50) that is, we decided to use each one of
these functions as in Eg. 15. This results in a more suitable updating attitude for dimension-
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by-dimension updating approach since instead of alternatively using both sine and cosine
functions, it benefits behavior of a particular function to update the dimensions of stationary
or moving CBs (i.e. sine for stationary and cosine for moving CBs) thus, controls the
randomness of oscillations and increases the possibility of generating a better CB.
Additionally, the form of Eq. (11) will be defined as:

fjenﬂ = cmy; X (1 +normrnd(0,1)) 15> 0.5
16
xig+e£;r1 = Xpmin + B X Cemax — Xmin) re < 0.5 (16)

2

where normrnd(0,1) is a normally distributed random number with mean equal to zero
(u = 0) and standard deviation equal to 1 (¢ = 1) and g is specified as [17]:

Bri1 =C.Px x (1 —PBx); P =rnd, By # 0.25,0.5,0.75 (17)

where number 4 was assigned to c as discussed before and rnd is a uniformly distributed
random number between zero and 1.

A desirable contribution between the local and global search (i.e. exploration and
exploitation phases) is founded employing Eq. (15) which illustrates that jth dimension of a
stationary body or its corresponding moving body will be updated with respect to the value
of r,. Similarly, Eg. (16) employs the same updating attitude as Eq. (15) providing
population diversity and enabling the ability of jumping out of the local optima. In spite of
all these explanations, a compromise of these mathematical models with CBO seems crucial.
To do so, an Adaptive Resolution Parameter (ARP) is introduced as follows:

gen
ARP = 0.25 X (1 — ———) (18)
maxgen

which will be compared to a random number, r, , with uniform distribution generated in
(0,1) domain in order to choose an updating method between Eg. (15) and Eq. (16).
Furthermore, to refrain from the loss of information obtained by CBO and refuse to sacrifice
generations, 10% of the dimensions of half (50%) of the total CBs will be updated randomly
using the two updating equations which were handled by comparing r, to 0.5 for deciding
whether to update the CB and comparing rg to 0.9 for deciding if the dimension of the
present CB will be updated. Pseudo-code of HCBOSCA which best elucidates the
implementation steps of this approach is presented in Algorithm 1.

Algorithm 1: HCBOSCA pseudo-code

Define and set values to population size (number of CBs), number of variables, lower and
upper bounds (x,,;,, and x,,,,) of variables, maximum number of generations (maxgen)
and a memory (cm) and set its size to 10% of the population size.

For each CB, randomly initialize the population.

While termination criteria have not been met do:
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“CBO Process”
Define COR parameter (¢).
Evaluate fitness value for each CB.
Sort CBs in ascending order according to their fitness values.
Replace the worst 0.1 of CBs with the ones in cm.
Rearrange CBs in ascending order according to their fitness values.
Save the best 0.1 of CBs in cm.
Calculate mass values for each CB using Eq. (1).
Obtain the velocities of particles by Egs (2), (3), (4), and (5).
Update the positions of CBs using Egs (6) and (7).
“SCA and Mutation Operator”
Define 5;, and r,
For each CB
Define r, equal to rnd.
If (r, > 0.5)
For each dimension of the CB
Define rg equal to rnd.
If (rg > 0.9)
Define r,,13,1,, 75 and rg as rnd and S, according to Eq.
(17).
If (r¢ > ARP)
Update the dimension of the CB utilizing Eq. (15).
Else
Update the dimension of the CB utilizing Eq. (16).
End-if
End-if
End-for
End-if
End-for
End-while

In this section, the new approach presented in this paper is executed in order to tackle the
optimum design of three benchmark structural problems. We have utilized MATLAB to
analyze the structures employing the direct stiffness method. 20 CBs in 1000 generations are
employed for design problems. To alleviate the statistical errors, each problem has been
performed 20 times independently. For constraint handling, the well-known penalty
approach is used. Thereafter we have done an analogy between the results of this paper and

3. EXPERIMENTAL RESULTS OF STRUCTURAL DESIGNS

some recent studies in the literature.
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3.1 The two-dimensions 200-bar truss problem

Fig. 3 illustrates the schematic of a 2-D 200-bar planar truss that contains 77 nodes. The
elements are divided into 29 groups. The material parameters are defined as follows: the
modulus of elasticity is 210 GPa, the material density is 7860 kg/m?, and the lower bound of
the cross-sectional area of all members is 0.1 cm?. 100 kg fixed external loads are attached
to each of the upper nodes and limitations of the three first natural frequencies of the truss
must be satisfied. These constraints are defined as: f; = 5 Hz, f, = 10 Hz, and f; > 15 Hz.

g
O
0
on
X
()
i

Figure 3. Schematic of the 200-bar planar truss [21]

Table 1 illustrates the optimal design details encompassing the minimum weight (Best),
mean weight (Mean), and standard deviation (SD) of the repeated tests corresponding to the
League Championship Algorithm with tie concept (LCA-Tie-2) [18], Differential Evolution
(DE) [19], Adaptive Hybrid Evolutionary Firefly Algorithm (AHEFA) [19], Hybrid
Arithmetic Optimization Algorithm and Differential Evolution (ADE) [20], CBO [13],
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ECBO [16], CBO with Morlet wavelet (MW) mutation and quadratic interpolation (QI)
(MWQI-CBO) [21], and the presented new algorithm (HCBOSCA).

Table 1: Details of the optimum results of the 200-bar planar truss

Areas (cm?)

Element . MWQI-
group LCA-Tie-2  pergp  AHEFA A\DEpRO] ECBO[21] CBO  HCBOSCA
18] [19] o

1 0.30891160 _ 0.3035 0.2093 0.3048 02093 02966 0.2052

2 048871045  0.4528 0.4508 0.4598 04497 04657  0.4700

3 010162941  0.1000 0.1001 0.1000 0000 01008  0.1000

4 010657586  0.1000 0.1000 0.1000 0.1 01002  0.1001

5 054794212  0.5162 0.5123 0.5075 05137 05077  0.5313

6 081304811  0.8203 0.8205 0.8207 07914 08253  0.8116

7 011532799  0.1004 0.1011 0.1001 04013 01001  0.1000

8 120042334 14393 1.4156 1.4204 14120 14194 14345

9 0.11282050  0.1003 0.1000 0.1000 01019 01002  0.1000

10 156204014 15918 15742 15620 16460 16222 15948
11 114548004 11641 11597 11583 11532 11746 11660
12 018455251  0.1319 0.1338 0.1274 01000 01013  0.1476
13 292990485  2.9561 2.9672 2.9828 31850 29600  2.9224
14 011534915  0.1003 0.1000 0.1000 0034 01006  0.1005
15 320811115  3.2491 3.2722 3.2612 33126 32534  3.1992
16 160489863 15949 15762 15791 15920 15706 15804
17 0.20433408  0.2525 0.2562 0.2555 02238 02417 02905
18 5.5387865  5.1567 5.0056 5.1095 51227 5154 5.1806
19 0.10219255  0.1004 0.1001 0.1004 51227 5154 0.1000
20 544086222 54938 5.4546 5.4613 5.3707 5.46 5.4220
21 202955602 2.1094 2.0933 2.1078 20645 21201  2.1273
22 057323199  0.6731 0.6737 0.6722 05443  0.656 0.6425
23 747936823 7.6922 7.6498 7.6301 76497 74562  7.6238
24 0.28990234  0.1150 0.1178 0.1019 0000 01616  0.1245
25 785261204  8.0035 8.0682 7.9284 76754 80675  7.9871
2 785261204  2.7794 2.8025 2.7951 27178 28185  2.7481
27 1038474350 105173 105040 105555 108141 104169 105977
28 2159152082 212292 212935 213836 216349 213471 214246
29 1025871058 107286 107410 105765 103520 104155  10.2717
Best (ko) 215006 21607747  2160.7445 21607263 215808  2157.06  2156.96
Mean (ky) 216821  2162.2495 21610393 21608514 215093  2159.88 215862
SD (kg) 9.51 3.0003 0.1783 0.0946 157 2.94 1.3864

It can be perceived that HCBOSCA has outperformed all the algorithms with the least
design weight equal to 2156.96 kg and the average design weight of 2158.62 kg which also
is less than the mean weight of the other algorithms. Moreover, the standard deviation of
HCBOSCA is less than other algorithms according to this Table 1. The natural frequencies
of the best designed structures are represented in Table 2. It is apparent that all the
constraints have been satisfied. Additionally, the convergence curves of the optimum
solutions of CBO, ECBO, MWQI-CBO, and HCBOSCA are depicted in Fig. 4. The number
of analyses required to extract the optimum design for each of these algorithms is 10,500,
14,700, and 15,060 respectively [21], while that of HCBOSCA is 14,460. It is worthy of
note that the present algorithm achieved the optimum design of CBO, ECBO, and MWQI-
CBO after 7920, 10,980, and 12,740 analyses.


http://dx.doi.org/10.22068/ijoce.2023.13.1.539
https://ceamp.iust.ac.ir/ijoce/article-1-539-en.html

[ Downloaded from ceamp.iust.ac.ir on 2025-11-14 ]

[ DOI: 10.22068/ijoce.2023.13.1.539 ]

2- llchi Ghazaan Finnal 27

Table 2: Natural frequencies of the optimum results of the 200-bar planar truss

Natural frequencies (Hz)

Frequency . MWQI-
LCA-Tie- AHEFA ADE ECBO
number 2 [18] DE [19] [19] [20] [21] C[:fl(]) HCBOSCA
1 5.000015 5.0000 5.0000 5.000 5.000 5.000 5.0000
2 12.363073 12.2301 12.1821 12.231  12.189 12.179 12.1996
3 15.173504 15.0277 15.0160 15.038 15.048 15.058 15.0787
4 16.728441 16.7054 16.6837 16.683  16.643 16.673 16.7059
5 21.576253  21.4238 21.3547 21.422  21.342 21.365 21.3606
6 21.688359 21.4435 214168 21.437 21.382 21.520 21.5049
200-bar truss
10000 gz T T -
9000 (5 e ECBO
, MWQI-CBO | |
8000 —HCBOSCA
7000
2 6000 Az
= 5000 G e
v
é 2158
g 4000} . Hﬂ
(=9 2157 1
3000
2156.5 -
4 1 1.6 1.7 1.8 1.9 2
x10*
'v\.._-,‘
2000 ! ! * ! * ! * ! *
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Number of structural analyses w107

Figure 4. Convergence curves for the 200-bar planar truss

3.2 The 3-bay 15-story frame problem
The schematic, applied loads, and member group numbering for this frame is depicted in
Fig. 5. This problem is consisted of 64 joints and 105 elements and is a common benchmark
in structural optimization. The elements are arranged in 11 groups consisting of 10 column
groups and 1 beam group. The modulus of elasticity is 29,000 ksi (200 GPa) and the yield
stress is equal to 36 ksi (248.2 MPa) for the material. For a sway-permitted frame, the
effective length factors of the members are calculated as k, = 0 and the out-of-plane
effective length factor is indicated as k,, = 1.0. Each column is considered as non-braced
along its length, and the non-braced for each beam member is determined as one-fifth of the
span length.

The constraints of displacement and strength are imposed according to AISC [22]
specifications as follows:
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(i) Maximum lateral displacement:
Ar

T _R<O 19

H (19)

where A is the maximum lateral displacement, H is the height of the frame structure, and R
is the maximum drift index specified as 1/300.
(ii) The inter-story displacements:
i

—_R, <0 ; i=12..n (20)
h;

where d; is the inter-story drift, h; is the story height of the ith floor, and R, is the inter-story
drift index equal to 1/300.
(iii) Strength constraints:

P, M, Py
+ -1<0 ; for <0.2
2(pan §0an (pan (21)
P”+8M“ 1<0 for 2 > 0.2
— 1= ; or = U.
(pan 9§0an §0an

where P, is the required tensile or compressive strength, P, is the nominal axial tensile or
compressive strength, ¢, is the resistance factor (¢. = 0.9 for tension and ¢, = 0.85 for
compression), M,, is the required flexural strengths, M,, is the nominal flexural strengths,
and ¢,, denotes the flexural resistance reduction factor (¢, = 0.90).

The nominal strength P, for yielding in the gross section is evaluated by:

{Pn = A4F, for tensile strength 22)
B, = AyF,, for compressive strength
F.. = (0.658%)E, ; for A, <15
0.877 (23)
or = <T> Fy ; for /‘lc > 1.5

where A, is the gross section area of the member, F,, is the yield, and F, is calculated as:

ki ,Fy
=— |= 24
Ae rm | E (24)

where [ is the length of the member, r is the radius of gyration, E is the modulus of
elasticity, and k is the effective length factor that can be evaluated as:

(25)

"= 1.6G,Gy +4.0(G, + Gg) + 7.5
B Gy+Gg+7.5
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where G, and G are stiffness ratios of columns and girders at the two end joints A and B of
the column section, respectively. Moreover, the sway of the top story is limited to 9.25 in.

(23.5 cm) in this problem.
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Figure 5. Schematic of the 3-bay 15-story frame [21]

The optimization results of Cuckoo Search (CS) [24], Teaching-Learning-based
Optimization (TLBO) [24], Water Evaporation Optimization (WEOQO) [24], Quantum
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Teaching-Learning-based Optimization (QTLBO) [23], CBO [13], ECBO [16], MWQI-
CBO [21], and HCBOSCA algorithms corresponding to this structure is demonstrated in
Table 3. As shown in this table, the design of HCBOSCA and MWQI-CBO with the
minimum weight of 86,917 Ib. are the lightest designs among all listed algorithms; however,
the mean design weight of HCBOSCA with a magnitude of 87,861 Ib. and the lower
standard deviation of it, signifies its better performance compared to the other approaches.

Table 3: Details of the optimum results of the 3-bay 15-story frame

Optimal W-shaped sections
MWQI-
CBO [21]

Element

group QTLBO [23] ECBO [21] HCBOSCA

1 W24x104  WI14x99  WI14x90  W14x99

2 W27x161  W27x161  W36x170  W27x161

3 W18x76  W27x84  W27x84  W27x84

4 W27x114  W24x104  W24x104  W24x104

5 W14x61 — WI14x61  WI14x61  W14x61

6 W30x90  W30x90  W30x90  W30x90

7 W8x48 W14x48  W14x48  WI18x50

8 W12x65 W14x61  W14x61  W14x61
9 W6x25 W14x30  W14x34  W8x28

10 W8x40 W14x40  W8x35  W10x39

11 W21x44  W21x44  W21x44  W21x44
Best (Ib) 87,416 86,986 86,917 86,917
Mean (Ib) 87,952 88,410 88,353 87,861

sD (Ib) 451 N/A 1,048 900

Fig. 6 demonstrates the convergence histories of the optimum solutions of CBO, ECBO,
MWQI-CBO, and HCBOSCA methods for this problem.

5 X 10° 3-bay 15-story frame
19 e ECBO
18 MWQI-CBO | ]
17 HCBOSCA
= 1.6 § o x10*
; 1.5 £95
D4t 8
— 1.3 Fiy 8.8
v
E 12 8.8
n_' L o)
L% .
I x(‘SIE 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
x10*
0.9 -
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Number of structural analyses <107

Figure 6. Convergence curves for 3-bay 15-story frame
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HCBOSCA obtains the best solution after 7840 analyses, where this number for CBO,
ECBO, and MWQI-CBO is 9520, 9000, and 14,420 respectively [21]. Also, the stress ratios
of all the elements and inter-story drifts of the optimum design of the structure are exhibited
in Fig. 7. The maximum existing value of the stress ratio equals 99.74%.

Inter-story dritt

0.45

0.4

3-bay 15-story frame

- % .. . - . L ]
- . L L)
- - . . " L . -
40 60 #0 105
Element number
(@)

3-bay 15-story frame

34 5 6 7 8 9 10 11 12 13 14 15

Frame story

(b)

Figure 7. Constraint margins for the best design obtained by HCBOSCA for the 3-bay
15-story frame problem: (a) element stress ratio; (b) Inter-story drift
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3.3 The spatial 582-bar tower truss problem

Fig. 8 shows the geometry of the 582-bar tower truss. Due to the structural symmetry,
members are linked together into 32 groups. A single loading condition is considered to be
applied such that lateral loads of 1.12 kips (5.0 kN) are applied in both x- and y-directions
and vertical loads of -6.74 kips (-30 kN) are applied in the z-direction to all free nodes of the
tower. A discrete list of W-shaped standard steel sections was employed in order to select
the cross-sectional areas of elements based on the area and radii of gyration properties. The
maximum and minimum cross-sectional area of elements are 6.16 and 215 in? (i.e., 39.74
and 1378.09 cm?), respectively.

‘ y
1
20@4m
13.12 )
20m .
(65.62 1)
<P 2m
T Eo3TR)
3D view Top view Side view

Figure 8. Schematic of the 582-bar tower [21]
Limitations on stress and stability of truss elements are imposed with respect to the
provisions of AISC [22] as follows:
The allowable tensile stresses for tension members are defined as:

gt = 0.6F, (26)
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where F, is the yield strength.

For compression members, the allowable stress limits are obtained considering the failure
mode of members. These failure modes are elastic and inelastic buckling which can be
determined as follows:

f-El

© 7 ) 1202
\ 2322

31, A3
C

- for A, <C
8C, 863] or A

(27)

for 4;,=>C

in which 4; is the slenderness ratio with a maximum magnitude of 300 for tension
members where 200 is recommended for compression members. It is defined as:

_ ki 28
= (28)

that k is the effective length factor that for all truss members it is substituted by 1. ; and r;
are length and minimum gyration radius of the ith member, respectively. C, is the
slenderness ratio that divides the elastic and inelastic buckling scopes defined as:

c - 2m2E
c Fy
and E is the modulus of elasticity.

It should be noted that nodal displacements in all coordinate directions must not exceed
+3.15in. (i.e., £8 cm).

Table 4 is a summary report of the results of Particle Swarm Optimization (PSO) [25],
Whale Optimization Algorithm (WOA) [7], Enhanced Whale Optimization Algorithm
(EWOA) [7], CBO [13], ECBO [16], MWQI-CBO [21], and HCBOSCA in optimum design
of this truss problem. According to this table, the design with the least volume is attained by
HCBOSCA which the minimum volume is 1,294,516 in3 and the mean volume is 1,301,234
in3. It also can be seen that this approach excels in terms of the standard deviation over the
rest. The convergence histories of CBO, ECBO, MWQI-CBO, and HCBOSCA for the best
solution achieved are depicted in Fig. 9. CBO, ECBO, and MWQI-CBO need 17,700,
19,700, and 15,560 analyses respectively to reach out to their best design [21]. Meanwhile,
HCBOSCA finds its optimum solution after 10,140 analyses that indicates the superiority of
this algorithm over those to which it was compared. Besides, Fig. 10 illustrates the stress
ratio of each element and the nodal displacement corresponding to the best design of
HCBOSCA. The highest magnitude of the stress ratio of elements is 99.87% for this tower
while the maximum displacements along the X and Y directions are equal to 3.1495 and
2.9848 in. respectively.

A

(29)
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Table 4: Details of the optimum results of the 582-bar truss
Optimal W-shaped sections

Element
ECBO MWQI-
group EWOA [7] [21] CBO [21] HCBOSCA
1 W8x21 W8x21 W8x21 W8x21
2 W14x90 W14x90 W14x90 W14x90
3 W8x24 W8x24 W8x24 W8x24
4 W10x60 W14x61 W14x58 W10x60
5 W8x24 W8x24 W8x24 W8x24
6 W8x21 W8x21 W8x21 W8x21
7 W14x48 W10x49 W10x45 W14x48
8 W8x24 W8x24 W8x24 W8x24
9 W8x21 W8x21 W8x21 W8x21
10 W10x49 W14x43 W10x54 W14x48
11 W8x24 W8x24 W8x24 W8x24
12 W16x67 W12x72 W12x65 W10x68
13 W18x76 W12x72 W12x74 W12x72
14 W10x49 W10x54 W10x49 W10x49
15 W18x76 W12x65 W14x74 W14x74
16 W8x31 W8x31 W8x31 W8x31
17 W14x61 W10x60 W14x61 W14x61
18 W8x24 W8x24 W8x24 W8x24
19 W8x21 W8x21 W8x21 W8x21
20 W14x34 W14x43 W8x40 W12x40
21 W8x24 W8x24 W8x24 W8x24
22 W8x21 W8x21 W8x21 W8x21
23 W8x21 W8x21 W8x28 W8x24
24 W8x24 W8x24 W8x24 W8x24
25 W8x21 W8x21 W8x21 W8x21
26 W10x22 W8x21 W8x21 W8x21
27 W8x24 W8x24 W8x24 W8x24
28 W8x21 W8x21 W8x21 W8x21
29 W8x21 W8x21 W8x21 W8x21
30 W8x24 W8x24 W8x24 W8x24
31 W8x21 W8x21 W8x21 W8x21
32 W8x24 W8x24 W8x24 W8x24

Best (ind) 1,295,738 1,296,776 1,295,562 1,294,516
Mean (in®) 1,310,836 1,306,728 1,305,095 1,301,234
SD (in%) N/A 7536 5320 5081
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Figure 9. Convergence curves for the 582-bar tower

582-bar truss

0.9} o
. ™
081 « %
* ™ .

0.7 * LY . .. .:. L]
0.6 o... " ee Y. * . -
0.5 sot e ot

of . o . * .. - ..'... " .
0.4 'o: L oW e s %

0 100 200 300 400 500
Element mumber

(a)

35


http://dx.doi.org/10.22068/ijoce.2023.13.1.539
https://ceamp.iust.ac.ir/ijoce/article-1-539-en.html

[ Downloaded from ceamp.iust.ac.ir on 2025-11-14 ]

[ DOI: 10.22068/ijoce.2023.13.1.539 ]

36 M. llchi Ghazaan, A. Salmani Oshnari and A. Salmani Oshnari

582-bar truss

X-direction
————— Y-direction
Z-direction

Displacement (in)

0 50 100 153
Node number
(b)
Figure 10. Constraint margins for the best design obtained by HCBOSCA for the 582-
bar tower problem: (a) element stress ratio; (b) nodal displacements

4. CONCLUSION

In this study, we introduced a new meta-heuristic algorithm based on CBO and SCA so-
called HCBOSCA. Due to the intrinsic malfunction of standard CBO in the exploration
phase and its desire for premature convergence, a better composition of the exploration and
exploitation phases is made using SCA. Furthermore, a logistic chaotic map in the
contribution of a mutation operator based on normal distribution was added to arise the
capabilities of diversification and escaping from local optima. These mechanisms were
exerted on some randomly chosen variables of a random half of each generation so that the
searching attitude of CBO is not been significantly distracted. Three benchmark structural
problems with discrete and continuous variables were tested using HCBOSCA and
thereafter, the results were compared to some recent works. The proposed method
demonstrated excellent performance compared to the above-mentioned algorithms. In
summation, HCBOSCA practically is a reliable approach with a high convergence speed and
ability to escape the local optima which denotes its competence with other state of the art
metaheuristic algorithms.
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