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ABSTRACT 
 

In this paper, three recently improved metaheuristic algorithms are utilized for the optimum 

design of the frame structures using the force method. These algorithms include enhanced 

colliding bodies optimization (ECBO), improved shuffled Jaya algorithm (IS-Jaya), and 

Vibrating particles system - statistical regeneration mechanism algorithm (VPS-SRM). The 

structures considered in this study have a lower degree of statical indeterminacy (DSI) than 

their degree of kinematical indeterminacy (DKI). Therefore, the force method is the most 

suitable analysis method for these structures. The robustness and performance of these 

methods are evaluated by the three design examples named 1-bay 10-story steel frame, 3-

bay 15-story steel frame, and 3-bay 24-story steel frame. 
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1. INTRODUCTION 
 

Optimization has grown in popularity as a research topic over the last four decades. 

Optimization is the process of determining the function's minimal or maximum value while 

satisfying the considered constraints [1, 2]. Metaheuristic algorithms are simple and do not 

need the gradient informant, so they are very popular than other optimization methods [3, 4]. 

Therefore, structural optimizers utilize metaheuristic algorithms as optimization methods for 

their problems. 
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According to the no-free lunch theorems, a single optimization method cannot solve all 

types of optimization problems [5]. As a result, researchers develop new meta-heuristic 

algorithms that draw inspiration from various sources. Meta-heuristic algorithms can be 

classified into four classes based on their source of inspiration. The first class is the 

evolutionary-based algorithms which are inspired by biological evolution behaviors. Genetic 

Algorithm (GA) [6], Shuffled Complex Evolution (SCE) [7], Biogeography-Based 

Optimizer (BBO) [8], and Monkey King Evolutionary (MKE) [9] are examples of this 

group. The second category of algorithms is human-based algorithms. These algorithms 

mimic human behavior, such as Harmony Search Algorithm (HS) [10], Imperialist 

Competitive Algorithm (ICA) [11], Social emotional optimization algorithm (SEOA) [12] , 

Tiki-Taka Algorithm (TTA) [13], League championship algorithm (LCA) [14], Soccer 

Game Optimization (SGO) [15], Shuffled Shepherd Optimization algorithm (SSOA) [16], 

Past Present Future Algorithm (PPF) [17], and Volleyball Premier League Algorithm (VPL) 

[18]. 

The third type of algorithm is swarm-based, which mimics the social behavior of various 

animals. Particle Swarm Optimization (PSO) [19], Emperor Penguin Optimizer [20], Killer 

Whale Algorithm (KWA) [21], , Dragonfly algorithm (DA) [22], Animal Migration 

Optimization Algorithm [23], Bird Swarm Algorithm (BSA) [24], Butterfly Optimization 

Algorithm (BOA) [25], and Fruit Fly Optimization (FFO) [26] are the example of this 

group. The final class of algorithms is physics-based algorithms, which employ physical 

laws to generate a new solution in each iteration, such as, Sonar Inspired Optimization (SIO) 

[27], Radial Movement Optimization (RMO) [28], Ray Optimization [29], Lightning Search 

Algorithm (LSA) [30], Tug of War Optimization (TWO) [31], Electro-magnetism 

Optimization (EMO) [32], and Ions Motion Optimization (IMO) [33]. 

Developing new metaheuristic algorithms is helpful in handling new optimization 

problems. However, improving the existing algorithms is more suitable to handle the 

different optimization problems. For example,  Kaveh and Talatahari [34] presented a new 

version of the charged system search for the optimum truss structure design. Nabati and 

Gholizadeh [35] introduced the modified version of the Newton algorithm for the 

performance-based optimization of the steel frame. Alkayem et al. [36] presented a novel 

oppositional unified particle swarm gradient-based optimizer for structural damage detection 

problems. Kaveh and Zaerreza [37] applied the metaheuristic algorithms for reliability-based 

design optimization of the steel frame. Ilchi Ghazaan et al. [38] developed the hybrid version 

of the colliding bodies optimization for the optimal design of the truss and frame structures. 

Dehghani et al. [39] presented a modified version of the adolescent identity search algorithm 

for the optimum design of the frame structures. 

The displacement and force methods are the two well-known structural analyzing 

methods [40]. The computing time required by these methods is proportional to the number 

of equations that must be solved to obtain the stress or displacement of the nodes. The 

number of equations depends on the degree of kinematical indeterminacy (DKI) and the 

degree of statical indeterminacy (DSI). The DKI and DSI values represented the number of 

equations to be solved using the displacement and force methods, respectively. Although the 

time difference is not significant during a single analysis, the time gap grows over the 

optimization process owing to many structural analyses. Therefore, the researchers applied 

the force method instead of the displacement method with the optimization problem has less 
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DSI than DKI. For example, Kaveh and Malakoutirad [41] applied the force method for the 

optimum design of the structures using the hybrid genetic algorithm and particle swarm 

optimization. Kaveh and Rahami [42] applied the force method for the optimum design of 

the truss structures.  

In this paper, for the first time, three improved algorithms named the enhanced colliding 

bodies optimization (ECBO), improved shuffled Jaya algorithm (IS-Jaya), and Vibrating 

particles system - statistical regeneration mechanism algorithm (VPS-SRM) are applied to 

the optimum design of the frame structures using the force method. The structures 

considered in this study have lower DSI than DKI. Hence the force method is faster than the 

displacement method. In addition, Kaveh and Zaerreza [43] demonstrate the effectiveness of 

the force method on the structures analyzed in this work. For this purpose, the force method 

is utilized as the structural analysis method. 

 

 

2. FORCE METHOD 
 

There are different types of force methods, including the topological force method [44], 

integrated force method, algebraic force method, and graph theoretical force method [45, 

46]. The graph-theoretical force method is easier to implement than other force methods, 

and the resultant flexibility matrix is sparser than the other force methods [47]. This study 

employs the graph-theoretical force method as a result. 

Considered the structure with 𝛾 time statically independent. In order to obtain the stress 

of the member using Eq. (1), the 𝛾 independents unknown are eliminated from the structure. 

 

𝒓 =  𝑩0𝒑 + 𝑩1𝒒 (1) 

 

where r represents the stress of the members, p represents the joint loads; q represents the 

forces of redundants; 𝑩0 and 𝑩1 are rectangular matrices with m rows and n and γ columns, 

respectively; n represents the number of joint load components, and m represents the number 

of independent member components. 

In Eq.1, the force of redundants is unknown. Therefore, the load-displacement 

relationship and the virtual work concept are employed to eliminate q from Eq. (1). The 

Eq.(1) is restructured as illustrated below: 

 

𝒗0 =  [𝑩0
𝑡 𝑭𝑚𝑩0 −  𝑩0𝑭𝑚𝑩1(𝑩1

𝑡 𝑭𝑚𝑩1)−1𝑩1
𝑡 𝑭𝑚𝑩0]𝒑 (2) 

𝒓 =  [𝑩0 −  𝑩1(𝑩1
𝑡 𝑭𝑚𝑩1)−1𝑩1

𝑡 𝑭𝑚𝑩0]𝒑 (3) 

where the 𝒗0 represents the displacement associated with the force components of p, 𝑭𝑚 is 

the unassembled flexibility matrix, G = 𝑩1
𝑡 𝑭𝑚𝑩1 is known as the flexibility matrix of the 

structure.  

In various variations of the force method, the 𝑩0 and 𝑩1 matrices are produced in various 

ways. Using the graph-theoretical force method, the spanning forest is generated from 
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structural supports in order to construct the 𝑩0 matrix. Calculating each sub-matrix of the 

𝑩0 by transferring each joint load to a support node. More details are accessible in Refs. [43, 

47]. 

For the form of the 𝑩1, the set of the cycle basis is required. Various algorithms exist for 

discovering the cycle basis. Nevertheless, the Kaveh's methods produce a sparser matrix 

than other techniques. After generating the cycle basis using the Kaveh methods, one 

element of each cycle is cut at its initial node, and six bi-actions are applied. In the 𝑩1 sub-

matrix, the columns represent the internal forces at the lower-numbered end of the ith 

member when six bi-actions are applied at the jth cut. More details are accessible in Refs. 

[46, 47]. 

 

 

3. IMPROVED METAHEURISTICS 
 

3.1 Enhanced colliding bodies optimization 

Enhanced colliding bodies optimization algorithm (ECBO) is developed by Kaveh and Ilchi 

Ghazaan [48]. ECBO is one of the famous improved metaheuristic algorithms which is used 

in different fields such as reliability assessment of trusses [49], and reliability-based 

optimization of the dome trusses [50]. ECBO algorithm starts with the solutions generated 

randomly in the search space, each of which is called as Colliding Body (CB). Then, CBs 

are evaluated, and the specified mass for them is calculated using Eq (4). 

 

𝑚𝑖 =
1 𝑓(𝐶𝐵𝑖)⁄

∑ 1 𝑓(𝐶𝐵𝑖)⁄𝑛𝐶𝐵
𝑖=1

    ;    𝑖 = 1,2, … , 𝑛𝐶𝐵 (4) 

 

where 𝑓(𝐶𝐵𝑖) represents the objective function value of the 𝑖th CB, and 𝑛𝐶𝐵 is the number 

of colliding bodies. After that, the specified number of the best solution are stored in the 

memory named colliding memory (CM). This memory is updated in each iteration of the 

optimization. Using CM, the vector of solutions saved in CM is added to the current 

population, and the same number of the current worst CBs are deleted in each iteration. 

Next, the candidate solutions are sorted based on their mass and divided into two district 

groups. The first fifty percent of the sorted population is considered the first group and 

named stationary CBs, while the next half of them are assumed to be moving objects. The 

moving CBs are moving toward the stationary CBs. The velocities of the stationary and 

moving CBs are calculated as follows: 

 

𝑣𝑖 = 0   ;    𝑖 = 1,2, … ,
𝑛𝐶𝐵

2
 (5) 

 

𝑣𝑖 = 𝐶𝐵
𝑖−

𝑛𝐶𝐵
2

− 𝐶𝐵𝑖    ;    𝑖 =
𝑛𝐶𝐵

2
+ 1,

𝑛𝐶𝐵

2
+ 2, … , 𝑛𝐶𝐵 (6) 
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𝑣𝑖
′ =

(𝑚
𝑖+

𝑛𝐶𝐵
2

+ 𝜀𝑚
𝑖+

𝑛𝐶𝐵
2

) 𝑣
𝑖+

𝑛𝐶𝐵
2

𝑚𝑖 + 𝑚
𝑖−

𝑛𝐶𝐵
2

   ;    𝑖 = 1,2, … ,
𝑛𝐶𝐵

2
 (7) 

 

𝑣𝑖
′ =

(𝑚𝑖 − 𝜀𝑚
𝑖−

𝑛𝐶𝐵
2

) 𝑣𝑖

𝑚𝑖 + 𝑚
𝑖−

𝑛𝐶𝐵
2

   ;    𝑖 =
𝑛𝐶𝐵

2
+ 1,

𝑛𝐶𝐵

2
+ 2, … , 𝑛𝐶𝐵 (8) 

 

𝜀 = 1 −
𝑖𝑡

𝑀𝑎𝑥𝑁𝐼𝑇𝑠
 (9) 

 

where 𝑣𝑖 is the velocities of the CBs before collision, 𝑣𝑖
′ is the velocities of the CBs after 

collision, 𝜀 is the coefficient of restitution (COR) decreasing linearly from unit to zero; 𝑖𝑡 is 

the current iteration number of the algorithm; 𝑀𝑎𝑥𝑁𝐼𝑇𝑠  is the maximum number of 

algorithm iterations. After calculating the velocities, the new position of the stationery and 

moving CBs are calculated using Eqs. (10) and (11). 

 

𝐶𝐵𝑛𝑒𝑤,𝑖 = 𝐶𝐵𝑜𝑙𝑑,𝑖 + 𝑟𝑎𝑛𝑑𝑖 ∘ 𝑣𝑖
′   ;    𝑖 = 1,2, … ,

𝑛𝐶𝐵

2
 (10) 

 

𝐶𝐵𝑛𝑒𝑤,𝑖 = 𝐶𝐵
𝑜𝑙𝑑,𝑖−

𝑛𝐶𝐵
2

+ 𝑟𝑎𝑛𝑑𝑖 ∘ 𝑣𝑖
′   ;     𝑖 =

𝑛𝐶𝐵

2
+ 1,

𝑛𝐶𝐵

2
+ 2, … , 𝑛𝐶𝐵 (11) 

 

where 𝑟𝑎𝑛𝑑𝑖 generates a uniformly distributed random vector in which each component is in 

the range of [−1,1] and the sign ‘‘∘’’ is the element-by-element multiplication between two 

vectors.  

In order to prevent the early convergence in the ECBO, the escape from the local optima 

mechanism is considered. If a randomly generated number in the range of (0,1) is less than 

the specified value (i.e., 𝑝𝑟𝑜), then escaping from the local optima mechanism is applied. In 

this mechanism, one of the design variables is selected randomly and regenerated randomly 

in the search space. The optimization process will be ended when the maximum number of 

iterations is reached.  

 

3.2 Improved shuffled Jaya algorithm 

The second algorithm considered in this study to investigate its performance in the optimum 

design of the frame structures using the force method is the improved shuffled Jaya 

algorithm (IS-Jaya). IS-Jaya is developed by Kaveh et al. [51] to improve the Jaya 

algorithm's performance. IS-Jaya performs well in both optimization problems with discrete 

and continuous design variables [52]. Like the other metaheuristic optimization method, this 

algorithm is started from the solution, which is randomly generated in the search space. 

Then the solutions are divided into subpopulations using the shuffled procedure. To this end, 
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first, all of the solutions are sorted based on their objective function. Then, equal to the 

number of subpopulations, the best solutions are selected and randomly added to each 

subpopulation. To place the second member of each subpopulation, the best solution of rest 

of solutions is selected and added randomly to each subpopulation. This process is repeated 

until all of the solutions are divided into subpopulations. More detail about the shuffled 

process is available in Ref [16]. Then, the step size for each solution is generated using Eq. 

(12). 

 

𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒𝑖 = 𝑟𝑎𝑛𝑑 × (𝑋𝑏𝑒𝑠𝑡 −  𝑋𝑖) − 𝑟𝑎𝑛𝑑 ×  (𝑋𝑤𝑜𝑟𝑠𝑡 − 𝑋𝑖) (12) 

 

where the 𝑟𝑎𝑛𝑑  is the random vector generated between 0 and 1. 𝑋𝑖  is the considered 

solution. 𝑋𝑏𝑒𝑠𝑡 and 𝑋𝑤𝑜𝑟𝑠𝑡 are the best and worst solutions for the subpopulation to which 𝑋𝑖 

belongs. After that, the new solution is calculated as follows. 

 

𝑋𝑖
𝑛𝑒𝑤 =  𝑋𝑖 + 𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒𝑖 (13) 

 

Then, the escaping from local optima mechanism is applied. To do this, one solution in 

each subpopulation is selected, and one variable of them is regenerated using Eq. (14). 

 

𝑋𝑖
𝑛𝑒𝑤 =   𝑋𝑖

𝑛𝑒𝑤 + 0.1 × 𝑟𝑎𝑛𝑑𝑛 × (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) (14) 

 

in which 𝑟𝑎𝑛𝑑𝑛 is the normally distributed random number. 𝑋𝑚𝑎𝑥 is the upper bound of the 

search space. 𝑋𝑚𝑖𝑛  is the lower bound of the search space. After that, the replacement 

strategy is applied. Using this strategy, the new solution is compared with their old solution 

in the aspect of the objective function, and the worst of them are omitted. Same as the 

ECBO, the IS-Jaya algorithm stopped when the maximum number of iterations is reached.  

 

3.3 Vibrating particles system - statistical regeneration mechanism algorithm 

The vibrating particles system - statistical regeneration mechanism algorithm (VPS-SRM) is 

the new improved version of the VPS, which is developed by Kaveh et al. [53]. VPS-SRM is 

started from the solution which is generated randomly in the search space. Then the new 

position of each candidate solution is generated. In the VPS-SRM, 80 percent of the solution 

is generated using the following equation. 

 

𝑉𝑝𝑖
𝑛𝑒𝑤 =  𝑤1 × (𝐷 × 𝐴 × 𝑟1 + 𝐻𝐴) + 𝑤2 × (𝐷 × 𝐴 × 𝑟2 + 𝐺𝐴) + 𝑤3

× (𝐷 × 𝐴 × 𝑟3 + 𝐵𝐴) 
(15) 

 

where 𝑉𝑝𝑖
𝑛𝑒𝑤 is the new position of the ith agent in the search space. 𝑟1, 𝑟2, and 𝑟3 are the 

random number which is generated between 0 and 1. 𝑤1, 𝑤2, and 𝑤3 are the parameter of 

the algorithm, which sum of them is one. 𝐻𝐴  is the best solution obtained so far. The 
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parameter like p is defined by the user within (0,1), and the random number within (0,1) is 

generated for each agent. If the 𝑝 < 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟, then 𝑤3 is set to zero.  𝐷 and A are 

defined as follows: 

 

𝐷 =  (
𝐼𝑡𝑒𝑟

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
)

−𝛼

 (16) 

 

𝐴 =  𝑤1  ×  (𝐻𝐴 − 𝑉𝑃𝑖
𝑜𝑙𝑑) +  𝑤2  ×  (𝐺𝐴 − 𝑉𝑃𝑖

𝑜𝑙𝑑) + 𝑤3  ×  (𝐵𝐴 − 𝑉𝑃𝑖
𝑜𝑙𝑑) (17) 

 

in which 𝐼𝑡𝑒𝑟 is the current number of the iteration.  𝑀𝑎𝑥𝐼𝑡𝑒𝑟 is the maximum number of 

the iteration. 𝛼 is the user-defined parameter, and 𝑉𝑃𝑖
𝑜𝑙𝑑 is the position of the ith particle in 

the previous iteration.  

Remaining of the solutions are generated using the statistical regeneration mechanism 

(SRM). SRM is developed by Kaveh et al. [54] and applied to improve the different 

optimization methods, such as enhanced dandelion optimizer [55]. In order to apply the 

SRM, the mean and standard deviation of the solutions stored in the memory of the VPS are 

obtained. Then, the position of the considered agent is replaced with the best position of the 

best solution obtained so far. After that, in the first fifty percent of the optimization iteration, 

twenty percent of the positions are alternated using Eq. (18). Otherwise, only one of its 

positions is modified using Eq. (18): 

 

𝑉𝑝𝑖
𝑛𝑒𝑤 =  𝑈(𝑀𝑒𝑎𝑛 − 𝑆𝑡𝑑 − 𝑆𝑖𝑔𝑚𝑎, 𝑀𝑒𝑎𝑛 + 𝑆𝑡𝑑 + 𝑆𝑖𝑔𝑚𝑎) (18) 

 

where 𝑈   is the operator that returns a random number generated from the continuous 

uniform distribution with lower and upper endpoints specified by 𝑀𝑒𝑎𝑛 − 𝑆𝑡𝑑 − 𝑆𝑖𝑔𝑚𝑎 

and 𝑀𝑒𝑎𝑛 + 𝑆𝑡𝑑 + 𝑆𝑖𝑔𝑚𝑎. 𝑀𝑒𝑎𝑛  and Std are the average and standard deviation of the 

solutions stored in the memory of the VPS. 𝑆𝑖𝑔𝑚𝑎 is a parameter that helps the statistically 

regenerated mechanism to work efficiently when the entire population converges to the 

specified value and is defined as follows. 

 

𝑆𝑖𝑔𝑚𝑎 = { 5        𝐼𝑓 𝑆𝑡𝑑 <  0.01 × (𝑉𝑃𝑚𝑎𝑥 − 𝑉𝑃𝑚𝑖𝑛) 
0                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                

 (19) 

 

where 𝑉𝑃𝑚𝑎𝑥
 and 𝑉𝑃𝑚𝑖𝑛

 are the upper and lower bound of the search space. 

In order to keep the solution in the search space, the harmony search-based boundary 

handling approach is employed. Harmony search-based boundary handling approach has the 

memory which is stored the best position obtained by the algorithm. The size of the memory 

is identical to the population size of the algorithm. The maximum number of iterations is 

considered as the termination condition of the algorithm. If the termination condition is 

satisfied, the optimization process is stopped, and the best solution stored in the memory is 

reported. Otherwise, the memory is updated, and the algorithm goes to the next cycle of 
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optimization. 

 

 

4. DESIGN EXAMPLES 
 

In this study, three benchmark frames named 1-bay 10-story frame, 3-bay 15-story frame, and 

the 3-bay 24-story frame are considered to investigate the performance of the optimization 

algorithms. Here, for the first time, the performance of these algorithms is tested in these frames 

using the graph-theoretical force method. In these examples, AISC-LRFD requirements are 

fulfilled for the stress and displacement limitation. The population size and the maximum 

number of function evaluations are set to 20 and 20000, respectively. Other parameters of the 

algorithms are the same as their main paper.  

 

4.1 The 1-bay 10-story steel frame 

The 1-bay 10-story steel frame is the first problem considered in this study. The schematic 

view, loading condition, and member grouping of the problem is given in Figure 1. The section 

for beam elements is picked from the pool of the 267 W-section, and the section for the column 

members is picked from W 12 and W 14 sections. Members' yield stress and elasticity modulus 

are set to 36 ksi and 29000 ksi, respectively. The degree of statical indeterminacy (DSI) and 

degree of kinematical indeterminacy (DKI) of this structure are 30 and 60, respectively. 

Therefore, the force method is the optimal analysis method in this example.  

 

 

 

Figure 1. Schematic view of the 1- bay 10-story steel frame 

 

The results obtained by the enhanced colliding bodies optimization (ECBO), improved 

shuffled-Jaya (IS-Jaya), Vibrating particles system - statistical regeneration mechanism 

algorithm (VPS-SRM), and particle swarm optimization- statistical regeneration mechanism 

algorithm  (PSO-SRM) [43] are provided in Table 1. According to this table, IS-Jaya and 
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VPS-SRM can find the optimum result same as the PSO-SRM. In addition, the statistical 

result obtained by the IS-Jaya is better than VPS-SRM and ECBO. The convergence history 

of the algorithms is provided in Figure 2. 

 
Table 1: Comparison results of the considered algorithms with another method in the 1-bay 10-

story steel frame. 

Element group  PSO-SRM [43] ECBO IS-Jaya VPS-SRM 

1 W14×233 W14×233 W14×233 W14×233 

2 W14×176 W14×176 W14×176 W14×176 

3 W14×159 W14×132 W14×159 W14×159 

4 W14×99 W14×99 W14×99 W14×99 

5 W14×61 W12×65 W14×61 W14×61 

6 W33×118 W30×124 W33×118 W33×118 

7 W30×90 W30×116 W30×90 W30×90 

8 W27×84 W27×84 W27×84 W27×84 

9 W18×46 W21×44 W18×46 W18×46 

Best weight (lb) 64001.98 65717.98 64001.98 64001.98 

Worst weight (lb) 66150.02 72911.97 66305.97 73385.99 

Mean (lb) 64607.08 68238.81 64746.99 66701.71 

SD (lb) 640.86 1723.33 667.67 2403.44 

 

 
Figure 2. Convergence histories of the ECBO, VPS-SRM, and IS-Jaya for the 1-bay 10-story 

steel frame 

 

4.2 he 3-bay 15-story steel frame 

The second example employed for investigating the performance of these three algorithms is 

the 3 - bay 15 -story steel frame. The loading condition and element grouping are given in 

Figure 3. Cross sections of the members for both beam and column are selected from 267 

W-section. Members' yield stress and elasticity modulus are set to 36 ksi and 29000 ksi, 

respectively. The maximum last story's sway is limited to 9.25 in. The DSI and DKI of this 
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example are 135 and 180, respectively, so the force method is the optimal analysis method.  

 

 

 

Figure 3. Schematic view of the 3-bay 15-story steel frame 

 
Optimization results are summarized in Table 2. According to this Table, EVPS-SRM 

acquired the optimum weight (87123.97 lb) than other methods, including PSO-SRM 

(87183.39 lb) [43] ECBO (89768.38 lb), and IS-Jaya (87261.95 lb). Moreover, the average 

weight of the 30 independent runs of the EVPS-SRM is less than ECBO and IS-Jaya. The 

convergence history of the algorithms is provided in Figure 4. This figure shows that VPS-

SRM converges to the optimum solution faster than other considered methods. 

 

Table 2: Comparison results of the considered algorithms with another method in the 3-bay 

15-story steel frame 

Element group  PSO-SRM [43] ECBO IS-Jaya EVPS-SRM 

1 W12×96 W18×106 W14×99 W14×90 

2 W27×161 W27×161 W27×161 W36×170 

3 W27×84 W24×84 W27×84 W27×84 

4 W21×111 W27×114 W24×104 W21×111 

5 W14×61 W10×68 W21×68 W14×61 

6 W30×90 W30×90 W18×86 W18×86 

7 W8×48 W12×53 W8×48 W8×48 

8 W12×65 W21×68 W12×65 W14×61 

9 W6×25 W18×35 W8×28 W14×34 

10 W8×40 W10×39 W10×39 W18×35 
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11 W21×44 W21×44 W21×44 W21×44 

Best weight (lb) 87183.39 89768.38 87261.95 87123.97 

Worst weight (lb) 88861.77 97950.19 95577.42 92135.22 

Meant (lb) 87606.54 93624.38 88552.35 88513.65 

SD (lb) 318.36 2039.44 1848.84 1673.72 

 

 
Figure 4. Convergence histories of the ECBO, VPS-SRM, and IS-Jaya for the 3-bay 15-story 

steel frame 

 

4.3 The 3-bay 24-story steel frame 

The last example investigated in this paper is the 3-bay 24-story steel frame. This frame is 

made up of 168 members, which are divided into 20 groups, as shown in Figure 5. The 

section of the column members is picked from W 14 sections, and beam members are 

selected from 267 W sections. The modulus elasticity of the members is quale to 29732 ksi, 

and the members' yield stress is set to 33.4 ksi. The DSI and DKI are 216 and 288. Hence, 

the force method is faster than the displacement method in this example.  
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Figure 5. Schematic view of the 3-bay 24-story steel frame 

 

According to Table 2, IS-Jaya acquired the optimum weight (201042.03 lb) than other 

methods, including PSO-SRM (201402.05 lb) [43] ECBO (203046.69 lb), and VPS-SRM 

(202392.03 lb). Also, the average weight and Standard deviation obtained by the IS-Jaya are 

better than ECBO and VPS-SRM. The convergence history of the algorithms is provided in 

Figure 6. 

 
Table 3: Comparison results of the considered algorithms with another method in the 3-bay 24-

story steel frame 

Element group PSO-SRM [43] ECBO IS-Jaya VPS-SRM 

1 W14×159 W14×132 W14×159 W14×145 

2 W14×132 W14×109 W14×132 W14×159 

3 W14×109 W14×90 W14×109 W14×109 

4 W14×74 W14×90 W14×74 W14×74 

5 W14×82 W14×61 W14×68 W14×68 
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6 W14×48 W14×74 W14×38 W14×38 

7 W14×30 W14×48 W14×34 W14×34 

8 W14×22 W14×22 W14×22 W14×22 

9 W14×90 W14×99 W14×90 W14×99 

10 W14×99 W14×109 W14×99 W14×90 

11 W14×90 W14×109 W14×90 W14×90 

12 W14×90 W14×90 W14×90 W14×90 

13 W14×61 W14×82 W14×68 W14×68 

14 W14×53 W14×43 W14×61 W14×61 

15 W14×34 W14×30 W14×34 W14×34 

16 W14×22 W14×22 W14×22 W14×22 

17 W30×90 W30×90 W30×90 W30×90 

18 W6×15 W8×18 W6×15 W6×15 

19 W24×55 W24×55 W24×55 W24×55 

20 W6×8.5 W6×8.5 W6×8.5 W14×43 

Best weight (lb) 201402.05 203046.69 201042.03 202392.03 

Worst weight (lb) 207372.11 251333.56 216006.12 238176.41 

Mean (lb) 203400.11 214820.81 205142.09 214012.51 

SD (lb) 1539.31 11021.81 3964.48 9354.60 

 

 
Figure 6. Convergence histories of the ECBO, VPS-SRM, and IS-Jaya for the 3-bay 24-story 

steel frame 

 

 

5. CONCLUSOINS 
 

In this study, the optimum design of the frame structures using the force method and three 

recently improved algorithms named enhanced colliding bodies optimization (ECBO), 

improved shuffled Jaya algorithm (IS-Jaya), and Vibrating particles system - statistical 
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regeneration mechanism algorithm (VPS-SRM) are investigated. The considered frames 

include the 1-bay 10-story steel frame, 3-bay 15-story steel frame, and 3-bay 24-story steel 

frame. Obtained results show that in the first example IS-Jaya and VPS-SRM acquired the 

optimum solution. In the second example, VPS-SRM can obtain the best solution. Also, the 

statistical results of the VPS-SRM are better than IS-Jaya and ECBO. In the last example, IS-

Jaya acquired better results than other methods. This shows that the IS-Jaya and VPS-SRM 

have better performance than other considered methods and can be utilized in other 

optimization problem of the frame structures. 
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